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Abstract—Time-varying data is usually explored by animation or arrays of static images. Neither is particularly effective for classifying

data by different temporal activities. Important temporal trends can be missed due to the lack of ability to find them with current

visualization methods. In this paper, we propose a method to explore data at different temporal resolutions to discover and highlight

data based upon time-varying trends. Using the wavelet transform along the time axis, we transform data points into multiscale time

series curve sets. The time curves are clustered so that data of similar activity are grouped together at different temporal resolutions.

The data are displayed to the user in a global time view spreadsheet, where she is able to select temporal clusters of data points and

filter and brush data across temporal scales. With our method, a user can interact with data based on time activities and create

expressive visualizations.

Index Terms—Time-varying, time histogram, filter banks, wavelet, animation, transfer function, clustering, K-means, visualization

spreadsheet.

Ç

1 INTRODUCTION

DATA points in a time-varying data set exhibit different
activities over time, which characterize the temporal

trends of underlying features. We define a temporal trend
as the characterization of the change in value of a data point
over time in a series. This can be classified in a variety of
ways, such as when a trend begins, when it ends, the rate of
change, and the value over time. This is true for all time-
varying data sets, and it seems natural to classify data
points based upon their activity to find temporal hot spots.

Traditional data exploration deals with classification
based upon temporally static value quantities. When time is
not considered, patterns and correlations based on temporal
activity can be missed. For example, in animation of
volumes, if the transfer function does not map a change
over time to a visible range or the mapping does not
highlight the dynamic activity, the user will miss the
change, or it will go ignored. It has been noted that change
blindness can occur when visually perceptual phenomena
change too slowly to be detected [23]. For rendering a single
time step, most methods do not have a concept of mapping
based on time activities or intercorrelated time activities.

Only until recently has scientific visualization attempted
to tackle classification based upon temporal activity. Fang
et al. developed a system to classify and segment medical data
based on a distance metric from the time activity curve vector
[5]. Akiba et al. [1], [2] use the time histogram to create time-
varying transfer functions based upon the time profile of a
data set. Our method builds upon these concepts to facilitate

time-varying data exploration, such that the data are
explored and classified based upon multiscale temporal
activities.

Our goal is to allow explorative capability to find trends of
different temporal scales in data to create visualizations based
on temporal activity. Similar to multiscale spatial classifica-
tion [20], temporal activity can occur at different temporal
scales. To explore the data, we utilize the wavelet [19] to
transform data points into a set of time series curves grouped
into different wavelet or filter bank levels. By filtering the data
into different frequency bands, a user is able to visualize her
data at different scales of activity and find data that share
similar temporal trends at particular time scale.

The data can then be explored by the activity in different
frequency bands and wavelet coefficients, as can be seen in
Fig. 1, by applying the Haar wavelet transform to the
recently corrected US annual temperature data from 1880 to
2006 from NASA. Fig. 1a is the original data, while the
Figs. 1b, 1c, 1d, 1e, 1f, and 1g are selected wavelet
coefficients after Haar wavelet transform. Going down the
rows, larger (slower) temporal trends can be seen in the
data. Fig. 1f shows that there was a rise in temperature in
the first 30 years and a similar rise in temperature in the last
30 years. The high-frequency coefficients in the same
frequency band in Fig. 1g show the same trend, minus the
mean or DC component, and it can be clearly seen that the
rise in temperature in the first 30 years and last 30 years is
roughly equal in magnitude.

For regular data with multiple data points, we group
data points into clusters of similar temporal activity using
clustering. The user then has a baseline to start exploring
their data based upon temporal activity. Using an inter-
mediate visualization, the wavelet clusters are displayed to
the user in a visualization spreadsheet, so she can explore
the global temporal trends present in the data [3], [11], [13],
[17], [30]. The user is able to select, inspect, and filter [4],
[25] time series clusters through the use of multiresolution
time histograms [6], [10], [16], displaying the contents of
each cluster. Selected and filtered clusters are combined
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together into a visualization by using Boolean operations,
time series operators, and animation [29], [30], [31].

2 RELATED WORK

We utilize the wavelet to decompose time series data into a
series of wavelet or filter bank levels. Wavelets have been
used previously as a compression and level-of-detail
reduction [19] scheme for large data sets. Recently, Lum
and Ma have used filter banks as a method to classify
spatial data based on different frequency ranges [20]. In
information visualization, the Fourier transform is used to
decompose line graphs into different scales to do optimal
banking to 45 at different temporal resolutions, where
banking to 45 attempts to find an optimal aspect ratio for
2D graphs to maximize the angles between line segments to
45 degrees for perceptual visualization enhancement. [8].
We use the wavelet transform to extract multiresolution
temporal trends. There has been a use of multiresolution
histograms for image recognition and matching [6], [10].
Jain and Merchant apply the wavelet transform to the color
histograms for images to build multiresolution histogram
pyramids for image retrieval. Hadjidemetriou et al. apply
spatial image filtering to acquire multiresolution histograms
for image matching. Our use of multiscale time histograms
is most like the latter, we filter the data along the time axis
and use clustering [7], [15] to match temporal trends.

Brushing, linking, and multiple data views have been
used in the visualization as a means to be able to draw

conclusions between multivariate data. GGobi and the like
are the latest incarnations of multivariate data brushing and
linking [4], [25]. Our use of brushing and linking is applied
in the selection of data points across temporal scales. The
use of spreadsheet formats are likewise used throughout
visualization to simultaneously display multiviews of data
[3], [11], [13], [17], [30]. We use visualization spreadsheets to
present the data that are acquired through wavelet
transformation and clustering. The use of graphical widgets
and user interfaces for are prevalent in classification and
transfer function design [14]. The combination of wavelet
transformation, clustering, time histograms, and brushing
and linking create a complete user interface to explore and
classify data by temporal activity.

There have been various research efforts in visualizing
time series data in the area of information visualization. For
instance, van Wijk and van Selow combined cluster analysis
and calendar based visualization to identify standard daily
patterns throughout the year [28]. Weber et al. [27]
proposed a method to visualize time-series data based on
spirals. The spiral graphs are effective for detecting periodic
patterns for large-scale data sets. Hochheiser and Shneider-
man [9] proposed a Timebox widget to specify query
constrains on time series data. Lin et al. [18] introduced
VisTree, a time series pattern discovery and visualization
system to help analyze data from aerospace applications.

Creating transfer functions and visualizing time-varying
volumetric data is one recent interest [21]. There has also
been other work in automatic and semiautomatic methods
of transfer function creation for time varying data sets [12],
[22], [26]. More recently, Akiba et al. have used time
histograms to be able to classify data based upon their time
series profile [1], [2], [16]. Their method is better at feature
tracking over space. Akiba et al.’s assumption is that data
point populations will aggregate in value space and move
together in value space. In this paper, we make the
assumption that interesting data points have similar
temporal trends. While our method is better at finding
and isolating data points based on similar activity, we
utilize their method for creating dynamic transfer functions
for data points based on extracted temporal features. Our
assumption is more closely linked to that by Fang et al. [5].
They use a method to segment medical data based upon
calculating distance metrics from a time series profile curve
[5]. We also extract data points based on time activity but
across several temporal scales with the ability to query and
explore at different resolutions. This work of temporal
activity selection provides the data input to volume
combination methods over space and time to create final
visualizations [29], [30], [31].

3 METHODOLOGY

In order to allow the user to find temporal trends in her
data, we model each data point or position in time series
data as a 1D time signal. A time series curve, time activity
curve [5], or time curve is a vector representing the value over
time at a particular data point. The time series vector for a
data point is a vector of t elements ordered by time, where t
is the number of time steps in the data set, and the value of
each element is the value at a time step of that data point.
Assuming the data value is scalar over time, if we were to
plot the value over time in a 2D graph, the line curve would
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Fig. 1. The corrected annual US temperature data from 1880 to 2006.
(a) The original data. (b)-(g) Selected wavelets from applying the Haar
wavelet transform to the original data, showing a 2-year, a 7.875-year,
and a 31.5-year trend. The (b), (d), and (f) are low-frequency wavelet
coefficients, and the (c), (e), and (g) are high-frequency wavelet
coefficients.
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comprise its graphically representative time curve like the
top graph in Fig. 1.

In a 2D time curve line graph, the user is more likely to
be able to detect changes in value over time or detect trends
and anomalies present in the time signal, compared to
animation or volume visualization. This is due to the global
time awareness and value change that is displayed by
2D plotting. The entire time sequence is available for
viewing at a glance. In volume rendering, comparatively,
the user has one slice in time displayed at any given
moment. Value change or trend detection depends heavily
on the capability of the transfer function to display the
trends, the speed that an animation is played at and the
memory of the user. Furthermore, trend detection in
animation can be easily missed due to opacity, occlusion,
visual memory, change blindness [23], or any number of
other perceptual factors.

To further aid the user, we decompose each time series
curve into wavelet levels or a series of filter bank levels, as
in the bottom graphs in Fig. 1. By using the wavelet
transform, we filter the time activity curve of each data
point into several scales of temporal activity. This allows the
user to explore the activity that takes place at different
temporal scales. In the displayed wavelet coefficients in
Fig. 1, we show a 2-year, a 7.875-year, and a 31.5-year trend
that are present in the single data point. The user can then
explore and classify the data based on various trends that
occur at different scales in the data. As in Fig. 1, the
different 2-year, 7.875-year, and 31.5-year trends that are
masked by high-frequency spikes in value are revealed
through filtering, like multiscale banking to 45 and multi-
scale volume exploration [8], [20].

One data point is easy to plot, like the aggregate US
annual temperature data, but when dealing with millions of

data points such as in time-varying volumetric data, it
becomes intractable for a user to visualize the time curve for
every data point. To expedite the user search process, we
utilize clustering [7], [15] to form temporal summary data
for each frequency band and wavelet coefficient type.
Clustering is run on groups of wavelet vectors separated by
frequency band and wavelet coefficient type to form cluster
groups. This means that each data point will be grouped
with other data points that share similar temporal activity
in a particular frequency band and wavelet category.

An example of the different clustering that can take place
in data is shown in Fig. 2, which from a 6,000 time-step series
of two meter atmospheric temperature data of the world. The
rendered image for the entire data is shown in Fig. 2a, colored
by the values of the first time step out of the series. The data
was wavelet transformed, and then, clustering was per-
formed separately in each frequency band and wavelet
coefficient type. The clusters shown in the example are from a
low-frequency band, showing 3,000 time-step trends or
showing the trends in the first and second half of the data.
Figs. 2b and 2c shows two different clusters based from
clustering the low wavelet coefficients, one cluster of a high-
temperature area, and one cluster of a low-temperature area.
Figs. 2d and 2e shows two groups based on clustering the high
wavelet coefficients. Fig. 2d shows data points of decreasing
temperature, followed by an even greater decrease in
temperature. Fig. 2e is a cluster of data points that has an
increase in temperature, followed by an decrease in tempera-
ture. A second example of classification or separation of data
points by temporal clustering can be seen in Fig. 3 using two
variables of a combustion data set. The image shows all of the
temporal clusters found in the data, and the data is colored by
the temporal cluster.

The data point clusters are shown to the user in a
spreadsheet format [17], with the centroid curve and
thumbnail volume rendering of the data in the cluster. This
is the primary user interface that displays all of the time
trends present in the data and allows the user to select the
clusters she wishes to explore for visualization. Data cells
are organized by frequency band and wavelet category and
sorted by derived properties such as cluster distance or
population overlap on cell selection. Spreadsheet cells can
then be filtered by centroid similarity or spatial overlap to
reduce the data complexity and increase the summarization
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Fig. 2. Two meter atmospheric temperature data from CCMS 3.0.
(a) The temperature for the entire world for the first time step. (b) and
(c) Shows the data points from two clusters from a low-frequency band
wavelet clustering. (b) Shows a clustering of a high temperature, which
is near the equator, and a low-temperature clustering, which is near the
North Pole and waters around Antarctica. (d) and (e) Shows two clusters
of high wavelet coefficients in the same frequency band. The cluster on
the (d) has a decrease in temperature followed by an even greater
decrease, and the cluster in (e) has an initial rise in temperature followed
by a dip.

Fig. 3. Examples of temporal clusters from combustion data. The data
points are colored by the temporal cluster that they belong to, so that all
of the data points with the same color have similar temporal trends.
(a) Shows the temporal clusters in the mix fraction variable, and
(b) shows the temporal clusters in the OH variable.
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of the time series data. A small spreadsheet is shown in
Fig. 4. This spreadsheet shows all of the low wavelet
coefficient clusters in the frequency band that represents
15.25 time-step trends for a 122 time-step data set.

Upon cell selection, the cluster is placed on a detail
spreadsheet, displaying all of the wavelet coefficients at
different time scale of the selected cluster, along with other
selected clusters. The wavelet coefficients in a cluster are
rendered in the form of the time histogram [16]. A time
histogram is a compact representation of a series of
histograms over time. A histogram for one time step is
represented by a vertical strip that spans the value range of
the data points, with each bucket rasterized as a rectangular
area with the bucket count displayed with color or intensity.
The horizontal axis represents time. Fig. 5 shows an
example of one time histogram cell from a series of time
histograms for a cluster. The time histogram is able to
display the value distribution and variance of the different
data points over time in a cluster, for each wavelet type and
frequency band. This allows the user to have a better
understanding of data contained within each cluster and to
compare the data with other cluster’s time histograms.

The user can further refine the data point selection in a
cluster to direct the exploration process. We allow the user
to brush and link [4], [25] over the time histogram plots to
make selections. She can filter data points by time curves
and trends, as seen in Fig. 6. Fig. 6 shows several time
histogram views of the same set of data, where the user has
brushed a selection in one time histogram. She can see the
results of her brushing in the other time histograms of the
same set of data but at different temporal scales of activity
and wavelet coefficient types. Additionally, the user can
make selection through value ranges via dynamic transfer
function painting [1], [2]. The spatial combination of
selected data points is accomplished through Boolean
operations or operators over time [29], [30], [31]. To make
trends more visible in animation, we allow the user to create
visualizations that dynamically rescale the animation speed
based upon the data trend.

4 MULTISCALE TEMPORAL EXTRACTION

In order to study the time-varying data at multiple temporal
resolutions, we need to transform the data. Wavelets
provide an elegant implementation for filter banks [24],
which are the foundation for multiresolution analysis.
Wavelets have been used often in visualization for
compression and multiresolution rendering [19] in the past.
Wavelets are defined by basis functions that filter a signal
into two parts: low-frequency or approximation coefficients
and high-frequency or detail coefficients. The process can
be repeated on the low-frequency coefficients to create a
hierarchy of resolutions [24]. The hierarchy formed by
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Fig. 4. A cluster spreadsheet featuring the mix fraction variable of a
122 time-step combustion data set. The spreadsheet is only showing
clusters for 15.25 time-step trends for the low wavelet coefficients. The
thumbnail of the data points for each cluster is rendered, and the
centroid time curve of the data points is rendered on top in a green
curve.

Fig. 5. A time histogram for a cluster from high wavelet coefficients of
15.25 time-step trends in the � variable of a 122 time-step combustion
data set. The high coefficient value over time for all data points in the
cluster is shown by the time histogram. Count intensity is rendered in a
log scale to emphasize outliers, since the centroid is shown. The red
curve is the centroid of this cluster. Since this is a high wavelet
coefficient curve, from the centroid, we can see that there is a zero
crossing, meaning there is a temporal peak in the data at that time
period in that frequency band.

Fig. 6. Selected time histograms from a 227 time-step earthquake data
set, featuring brushing and linking. In (a), the time histogram, which is
15.13 time-step low coefficient trends, the user has brushed a trend of
interest, and the time curves that pass through the brushed area are
highlighted. The same time curves or data points are linked in the other
time histograms. (b) The same data at the same frequency band but is
showing high wavelet coefficients. (c) The original data time histogram.
The user is able to brush and alter the selection in all of the linked time
histogram cells.
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repeated applications of the wavelet transform forms a filter
bank or a set of band limited signals based upon the original
signal. Among the different types of discrete wavelet
transforms, the Haar wavelet and the Daubechies wavelet
are commonly used. The Haar wavelet is very fast to
calculate and has a simple support, and from the user point
of view, the calculation of the wavelet and its meaning is
simple to understand. We have a series of increasingly low-
pass signals based upon the original signal, representing the
data at different time scales. Also, we have the derivatives
of each of the low-pass signals, showing the rate of change
of the data over different time scales.

4.1 Haar Wavelet

Assuming that the time sampling rate for the data is regular
or can be converted to a uniform sampling rate, we use the
Haar wavelet to transform the data into a multiscale
temporal format. The Haar wavelet has several different
notational forms. The version that we use is the low-
frequency coefficients being the mean of two adjacent
samples, and the high-frequency coefficients being the
difference of two adjacent samples. The reason for this
notation and is for the ease of understanding from the user
point of view, rather than reconstruction support. In this
work, the wavelet transform is used to represent the time
series at different temporal scales for user exploration. By
reasoning on the wavelet transform in this way, to the user,
the low-frequency wavelet coefficients are the average or
value signal, and the high-frequency wavelet coefficients
are the rate-of-change or derivative signal. The Haar
transform is given in (1) and (2), where O is the original
signal, L are the low-frequency coefficients, and H are the
high-frequency coefficients:

Li ¼ ðO2iþ1 þO2iÞ=2; ð1Þ

Hi ¼ O2iþ1 �O2i: ð2Þ

The recursive process of applying the Haar transform on
the L coefficients results in a cascading filter bank of
dlog2ðtÞe levels of low-frequency coefficients and high-
frequency coefficients, where t is the number of samples.
For reconstruction, strictly speaking, a level l filter bank has
dt=2le low-frequency coefficients and dt=2le high-frequency
coefficients.

Though in our visualization, we use dt=2l�1 � 1e high-
frequency coefficients to display the difference between
every adjacent time step. Strictly speaking, if we were using
the wavelet as a compression or back-end level-of-detail
method, the additional coefficients are extraneous for
reconstruction. The additional coefficients are for visualiza-
tion and user analysis to show the difference between every
time point. For example, given eight data points, 12233445,
the strict Haar high-frequency coefficients would be 1111.
Instead of visualizing those coefficients, we increase the
number and show the user 1010101, which is much more
informative in terms of showing the rate of change of the
signal. This is on the order of a 2ðnlognÞ transformation,
because of the extra set of coefficients.

For our data transformation, for a data point x in a time
varying data set, it has t samples over time, where t is the

number of steps in the time series. The t samples of x form a
time series vector v, where the elements of v are ordered by
time. The Haar transform is applied to every time vector in
the data set, such that for every v, HaarðvÞ is a Haar wavelet
hierarchy representing data point x at different frequency
bands and wavelet coefficient types. Alternatively, it can be
thought of as filtering a data point x across time to extract
its characteristic signal across frequency bands and signal
types. This wavelet transformation is used to display a data
point’s temporal trend at various temporal scales to the
user. Assuming that the data is scalar, the multiscale
temporal trend of a data point can be displayed by drawing
the 2D curve of each wavelet vector.

Fig. 1 is an example of applying the Haar wavelet
transform to one data point. Fig. 1a is the original
temperature over time. Figs. 1b, 1c, 1d, 1e, 1f, and 1g are
the wavelet transformed data plots.

4.2 Temporal Activity Clustering

It is not possible to be able to draw every 2D wavelet graph for
every data point in a data set of realistic size. There would be
simply be too many line graphs to plot and explore. In order to
reduce the data set size and to create summary information,
we employ clustering on the wavelet data. Clustering is a
method for grouping a set of high-dimensional vectors into
semantic sets. In the most general terms, a similarity or
distance metric is repeatedly applied to the input set of
vectors to separate the data into semantic groups or clusters.
Common methods for clustering include energy minimiza-
tion solutions like K-Means and machine learning algorithms
like the self-organizing map (SOM) [7], [15].

Our use of clustering is employed on the time vectors
that are generated through the wavelet transform to form
sets of data points that exhibit similar time activities. For
each data point x in a time series data set, it will have
2 � dlog2ðtÞe þ 1 vectors representing the original data and
the low-frequency and high-frequency wavelets from the
Haar transform. For each of the vector types, we cluster
the data points in the time-varying data set. Since we
have 2 � dlog2ðtÞe þ 1 groups of frequency band and signal
type, a data point x will belong to one cluster in each of
the groups as a result of this clustering process.

By performing clustering on each signal type separately,
a data point is grouped with other data points that have
similar temporal activity in a particular frequency band and
wavelet type. By clustering by low coefficients, temporal
activity grouping is dominated by value over time. When
grouping by high coefficients, data points are clustered by
the rate-of-change over time. This allows the user to explore
the range of possibilities of temporal trends over each
frequency band and signal type. We assume that there will
be population separation in the clustering, such that clusters
across frequency bands and wavelet coefficient types will
have different data point populations. This is where
interesting temporal trends should appear in exploration.

Fig. 2 displays several clusters in a low-frequency band.
The second row shows data points that were grouped
together because they had similar low wavelet coefficient
activity over time in that frequency band. If we cluster by
high wavelet coefficients, we obtain clusters, seen in
Figs. 2d and 2e, that contain some of the same data points
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in the first two clusters. Therefore, the user can make a more
refined selection by taking the intersection, through Boolean
operations, between two clusters. For example, if the user
intersects the cluster in Fig. 2b with the cluster in Fig. 2e, she
is able to visualize a region that not only has high
temperature value but also is raised and then dipped in
temperature.

The clustering method that we use is a hybrid SOM and K-
Means with kd-tree acceleration. While K-Means and kd-tree
are well known, the SOM is an AI learning network that
projects high-dimensional vectors to a lower dimensional
space, while trying to preserve the topology of the higher
dimension space. We use the SOM to quickly arrive at an
initial, hopefully globally optimal, centroid set for clustering
and then use K-Means to refine the set to a convergent
answer. The drawback is that the K-Means and SOM require
the number of clusters as input; therefore, it may under or
overcluster because the number of clusters picked may not be
the number of natural clusters in the data. The initial use of
SOM attempts to shake K-Means into a global minimum
rather than a local minimum. There may be utility in using an
alternative clustering method for creating temporal summa-
ries, compared to the clustering we have used.

One drawback or limitation that we have in our method is
that we are able to classify data points into temporal hotspots
such as regions in space that share the same activity, but we
are not able to do spatial tracking of values or temporal phase
shift. For example, in the case studies found later in the paper,
our method is able to classify the weather data into
geographical regions by their temperature patterns over
time. Though, for data such as the combustion data set, we
classify volumetric regions that have spatially moving data
values that are moving through a region, rather than tracking
the value over space. This is because a value moving through
space appears as an impulse time curve as it passes through
different regions of space.

5 USER INTERFACE

The goal of the user interface is to display the time activity
of a data set and to allow the user to select data points based
on the visualized temporal activity. A cluster spreadsheet is
formed from data acquired through wavelet transform and
clustering on the input. From the clusters, the user is able to
explore and find data that have interesting temporal
activity. To get further detail, the user can select the clusters
of interest and place them on a time histogram spreadsheet.
From the cluster selection and refinement, the visualization
is formed, highlighting the data of user selected temporal
activity, which in turn can lead to further refinement and
exploration.

5.1 Cluster Spreadsheet

The cluster spreadsheet is the primary interface that forms
the temporal trend exploration. Each cell of the spreadsheet
represents a cluster formed from the clustering of wavelet
data, explained in the previous sections. The cells are sorted
by spreadsheet columns, such that each column contains
clusters of one wavelet level (frequency band), and sorted
left to right by the lowest detail to the highest detail.

Low wavelet coefficients are on the left half of the
spreadsheet, while high wavelet coefficients are on the
right half of the spreadsheet, so that comparisons can be
made between wavelets of the same type. Given that
there are dlog2ðtÞe wavelet levels (frequency bands) from
the Haar wavelet transformation, two wavelet coefficient
types from the low and high coefficients, and a fixed
number of clusters k per wavelet category type, then
there will be 2 � dlog2ðtÞe � k cells in the spreadsheet,
where there are k rows and 2 � dlog2ðtÞe columns. An
example full cluster spreadsheet can be seen in Fig. 7.

To show the summary information, each cell graphs the
centroid time curve of the cluster, the average variance of
the cluster members from the centroid, and a thumbnail
rendering of the data points in the cluster, giving a temporal
and spatial summary of the data that is contained in each
cluster, as seen in Fig. 8. On the right edge of the cell is a bar
indicating the ratio of population of data points in the
cluster to the total data point population, so the user can see
the size of the cluster. Next to that, there is an additional bar
indicating either intersecting population count or centroid
distance from a reference cluster that is selected by the user.
The quantity that this bar shows is used in relevance
reorganization, as is explained below.

One point of mention is that this spreadsheet interface
can have a problem with data explosion or overwhelming
the user with too much information. Since we extract
several different time scales and multiple clusters of data, it
can be a daunting task for the user to be able to search and
explore the data. The clustering was a first pass at data
reduction, and we have several different user interface
controls sorting and simplify the amount of data shown to
the user. Our user interface makes a good attempt for
visualizing multiscale temporal data, but there is room for
future improvement, beyond what we have done here.

5.2 Relevance Reorganization

When the user selects a particular cluster cell, the entire
spreadsheet is reorganized to display the relative relevance
of other clusters to the selected cluster. The basic rules for
reorganization is that a cell will stay in its own column, as
column is an indication of frequency band and wavelet
coefficient type. A cell can move up or down within its
column. The goal of sorting in the column is to move cells
vertically closer to the picked cell so that closer cells will
have higher relevance. Therefore, when the user is brows-
ing the spreadsheet, after choosing a cell, she is presented
with a spatial reorganization of the spreadsheet to display
clusters with similar temporal or cluster population
characteristics. We note that all the following reorganization
methods can be inverted to reorganize the cluster spread-
sheet to highlight dissimilar cells when necessary.

5.2.1 Same Column Reorganization

Within the column that a picked cell resides, other cells in
that column are reorganized based on the cluster centroid
distance from the picked cell. The effect is that when a user
picks a cell, clusters in the same column are moved closer if
they have a smaller distance using the clustering distance
metric between their temporal centroids and moved farther
away if there is a larger distance. The first columns of the
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images in Fig. 9 show an example of resorting cells in the
column of the picked cell. Cells that are temporally similar
have moved closer, in this case, similar cold temperatures to
the picked cell (please see the figure caption for detail). By
moving cells that have similar centroids closer to a target
cluster, we emphasize the clusters that have the same

temporal trend as the picked cluster. In addition to
resorting the cells, we always show the relative normalized
temporal centroid distance in a cell with a red vertical bar
on the right of the cell.

5.2.2 Other Column Reorganization

The other columns, which are not the column of a picked
cell, are sets of clusters in different frequency bands and
wavelet coefficient types. In order to show their relevance to
a picked cell, we can re-sort the cells vertically such that
their relative vertical distance from a picked cell is equal to
the percentage of shared population from the picked cell.
This is equal to COCðA;BÞ ¼ jA

T
Bj=jAj, where A is the

picked cell, and B is the cell to be sorted, which we call
crossover count. The second and third columns in Fig. 9a
shows an example of how other column reorganization
works. The user has picked cell 1 with cold temperatures,
and cells with the highest overlapping data point popula-
tion in other columns are moved vertically closer. Cluster
cells with smaller crossover count will be moved relatively
farther away from the center row. By moving cells with the
highest shared percentage population vertically closest to a
picked cell, we emphasize how data point populations
recluster across frequency bands and where temporal
trends diverge across frequency bands. In this example,
we can see that there is a split in the cluster population as
we increase in the detail of temporal scales. For this
particular data set, we can reason that this is due to the
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Fig. 7. A cluster spreadsheet of the OH variable of 122 time-step combustion data set. After the data has been wavelet transformed and clustered, it
is organized into a spreadsheet. The left half of the spreadsheet shows low wavelet coefficients, while the right half shows high wavelet coefficients.
The columns are organized from the lowest frequency band (long-term trends) to the highest frequency band (short-term trends), reading left to right.
Each cell is one cluster of a particular frequency band and wavelet coefficient type. The spreadsheet gives a global view of the different trends that
are present in the time varying data.

Fig. 8. A close up of a cluster cell from Fig. 7. The background of a cell (1)
contains a thumbnail rendering of the data points in the cluster. In the
foreground, the green curve (2) represents the centroid temporal trend of
the data contained in the cluster. The white curves (3) indicate the
average temporal variance around the centroid time curve. The green bar
in the lower right (4) indicates the population size of the cluster. The
yellow bar in the lower right (5) is for showing the data point overlap with
another cluster or the centroid distance from another cluster.
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northern and southern hemisphere monthly temperature

cycle. In short term temporal trends, data points are

temporally similar to regions in the same hemisphere. In a

longer term trends, data points are similar to regions in the

same latitude, ignoring monthly trends. We always show

the crossover count between a picked cell and every other

cell by a yellow vertical bar on the right of a cell.

5.2.3 Row Sensitive Reorganization

To emphasize similarity across all rows, we can sort the

cells in each column based on a greedy crossover-count

selection compared with the cells in the column that the

picked cell resides. To do this, the picked cell first moves
the cell with the highest crossover count in each column
vertically into its row. Then, the cell with the smallest
centroid distance to the picked cell in the same column does
the same, i.e., it moves the cell with the highest crossover
count with itself in each column vertically into its row. This
is repeated for the next smallest centroid distance cluster
until there are no more cells to reorganize. Fig. 9b shows an
example of using this reorganization method on the
spreadsheet. Rows A and B are populationally similar to
the clusters 2 and 3, respectively, in the column where the
picked cell resides. This tries to ensure that there is
relevance across columns as well, such that the user reads
across rows, all of the clusters are from similar data point
population, although this is not always guaranteed due to
the greedy selection method we use. We can see a shift in
the other cluster populations over temporal scales, as well
as the picked cell. The user can still see the crossover count
with the picked cell by the yellow bar on each other cell. As
an alternative for using crossover count as a reorganization
metric, the centroid distance between clusters can be used
as well in the previous two methods for sorting columns to
emphasize temporal trend similarity between clusters
rather than population similarity.

5.3 Spreadsheet Simplification

The user interface visualization can be complex due to the
fact that many cells are displayed at once, like in Fig. 7.
Further simplification can be done by only showing a few
columns of interest, like we have done in Fig. 9. Alter-
natively, we can use similarity metrics to automatically cull
cells or reduce the number of cells. Clustering across
different frequency bands results in clusters with different
populations, but there will still be overlap in the population
of data points. Like in Fig. 9, there is a shift in cluster
population indicating a shift or change in temporal trends,
but many of the clusters have similar populations across
temporal scales. By culling clusters that have similar
populations but retaining ones with different populations,
we reduce the complexity of the spreadsheet but preserve
the information.

5.3.1 Cell Culling

After the user selects an initial set of clusters, instead of
showing clusters thatmight be considered redundant because
they have similar data point populations, cells can be culled if
the cluster population does not exceed a percentage popula-
tion difference threshold from the closest cluster population
in the selection set. This percentage population crossover
count is the maximum of the size of the intersection set
between two clustersAandBdivided byA for allA in the user
selection set U , MCOCðBÞ ¼ maxð8A 2 U : jA

T
Bj=jAjÞ.

This is performed incrementally in a greedy manner, adding
new cells to the user selection set U as they exceed the
population threshold. An example can be seen in Fig. 10. Cell
culling tends to be able to discard low wavelet coefficient
clusters, because clusters tend to be similar over temporal
scales. On the other hand, high wavelet coefficients, by their
very nature, retain the detail information of every temporal
scale and thus are unlikely to carry the same cluster
population over temporal scales.
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Fig. 9. Two sorted views of a portion of a cluster spreadsheet for 2-meter
monthly temperature data of 6,000 time steps, showing clusters of data
points that have similar (left to right) 32-month, 16-month, and 8-month
trends. In (a), the user has picked cell 1. Cells in the same column are
sorted by the centroid time curve distance to the selected cell, so that
clusters 2 and 3 of similar temperatures over time have moved closer to
the picked cell. This is also indicated by the length of the red bar in the
cells. Cells in the other columns are sorted, such that cells that has a
greater population overlap with cell 1 are moved vertically closer but
stays in the same column. This can also be quantitatively seen by the
length of the yellow bar in the cells. In (b), the difference is that cells in
row A have the highest overlap with cell 2, and cells in row B have the
highest overlap with cell 3.
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5.3.2 Cell Merging

Additionally, we can use the distance metric used in the

clustering algorithm to merge cells in the same column

based on the centroid difference. Cell merging is a type of

user based clustering to reduce the screen area occupied by

the spreadsheet. If two clusters have similar centroids, such

that the distance between two cluster centroids is under a

threshold, we merge the cells to an overlay cell. The user

can manually merge cells together to form a cell union if she

decides that the data is similar or belongs together. All of

the centroids merged together are rendered in the overlay

cell, and the rendered thumbnail of the clusters is a spatial

union of the combined cluster data. The user is allowed to

resplit the clusters into individual cells of their own, if she

only wishes to pick one cluster or to see the data of each

cluster individually.

5.4 Time Histogram Spreadsheet

When the user selects a cluster, it is added to a secondary

spreadsheet, a time histogram spreadsheet, as in Fig. 11. The

column layout is the same, such that there are two halves

corresponding to low and high wavelet coefficients, and

each column corresponds to one frequency band. Initially,

the time histogram spreadsheet is empty. When a cluster is

selected, it is added as a new row to the time histogram

spreadsheet, and the time histogram of the cluster across

frequency bands is displayed in each column for a row. The
time histogram in each frequency band provides a
summary of the time curves that are contained within a
cluster, so that the user can see the details of distribution of
values over time. If there is more than one row, the
spreadsheet is resorted to show the relevance between
clusters, as was mentioned in the previous section.
Essentially, the time histogram spreadsheet is to display
details for the selected clusters. It also provides a good
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Fig. 10. An example of culled spreadsheet of � variable from 122 time-step combustion data set. The culling order was performed from the highest

detail to the lowest detail at a 75 percent population threshold. There were 35 cells that have been culled out of 126, resulting in a 27-percent space

savings. By culling cluster cells that do not change populations over temporal scales, the essence of the temporal trends in are retained and even

highlighted since they are the only cells that remain.

Fig. 11. An example of time histogram spreadsheet from 2-meter
atmospheric temperature data of 6,000 time steps. Four clusters have
been selected, ranging from top to bottom. Two time histograms
showing the low wavelet coefficients are on the left, and two time
histograms showing the high wavelet coefficients are on the right. The
multiscale aspect is very useful in hard to detect trends such as long-
term trends as can be seen in this example. The low wavelet short-term
coefficients look to be flat over time, but high wavelet long-term
coefficients reveal that there are changes in the time curve.
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interface for the user to be able to make fine tuning
adjustments of the data points within a cluster, as described
below.

5.4.1 Time Curve Brushing and Linking

Our manipulation of the data contained within a cluster is a
brush widget. There are two modes of operation with the
brush widget. In the first mode, the user paints an area in
time histogram she wants to explore, and time curves that
pass through the selected bucket on the time histogram are
selected. Any time curves that fall within the user painted
area are selected, drawn as polylines, and linked [4], [25]
across the time histogram columns, seen in Fig. 6. By
drawing the curves as continuous polyline rather than
plotting the data points, the change in value over time
becomes more apparent. The user can make refined
selections by using intersection, union, and difference
brushes, such that the different brushes remove or add
data points from the selection set based on the operation of
a brush. By linking time curves across frequency bands, the
user can see the temporal profile of the data and potentially
make fine tuning adjustments in another frequency space.
Brushing and linking is restricted to the data within a
cluster or a merged cluster. To make clear the relationships
between clusters, the user can use spatial Boolean operators
to combine clusters into one visualization.

5.4.2 Dynamic Transfer Function Brushing and Linking

The second mode of operation uses value space selection
[1], [2], rather than time curve selection. By painting on the
time histogram with color and opacity brushes, the user can
create a temporally dynamic transfer function. She paints
the value of the transfer function over time by using the
time histogram as a guide for value ranges. The paint is
linked across all time histograms within a row, such that if
the user paints in another frequency band, the transfer
function is updated. The paint can also be linked across
rows, such that the transfer function can be shared across
several clusters.

While the former time curve selection method is more
useful for temporal trend selection, the latter method is
more useful for value range tracking. Both modes can be
combined together to make temporal trend selections and
value range tracking. The system can also generate dynamic
transfer functions through a semiautomatic method. The
user specifies a static transfer function with a center value,
and the system applies the transfer function centered
around the cluster centroid over time. This allows the user
to track the centroid value and the variance from the
centroid over time, within a cluster, like in Fig. 12.

6 ADDITIONAL EXPLORATION SCHEMES

By selecting clusters and refining the clusters through the
time histogram spreadsheet, the user narrows the set of data
points to a small set that exhibits some temporal behavior.
Time curves map to data point positions, and there is
spatial overlap between selected clusters across temporal
scales. This is because each data point is clustered
independently on each of its wavelet vectors, and a data
point may be selected multiple times across cluster

selections. This behavior is desirable, because by having
cluster sets that have intersecting members, the user can
create visual relationships between cluster sets based on
their temporal activity.

Each user refined cluster is a set of data points that share
temporal behavior, the user can create a visualization
composing relationships between temporal activity clusters.
Assuming we have a predefined static transfer function or
the user can define a dynamic transfer function per cluster
in the previous section, we can operate on selected clusters
to create a visual query [30].

By using the spreadsheet interface to select clusters and
the time histogram to refine those clusters, the user forms
an operator tree to compose clusters into a temporal query.
Intersection operations are used to find data points that
share trends in two clusters. Union operations are used to
join data points together that potentially have different
trends. Difference operations are used to find key differ-
ences between clusters such as finding outliers to two
trends. An example of this is found in Fig. 13 using the 2-
meter atmospheric temperature data.

Additionally, within a time segment, the user can create
value and trend highlighting through temporal operators
[29], [31]. In the time histogram spreadsheet view, the user
can select individual time steps or a run of time steps to be
operated on over time. By providing temporal operators,
the user can compose several time steps into one time step
that has derived data to highlight the data value trends that
are present in that time segment and to extract value
differences or similarities.

6.1 Multivariate Interaction

Additional variables can be easily added to the system by
adding spreadsheet panes, such that one variable takes up
one pane in the spreadsheet. To avoid cluttering the screen in
the cluster spreadsheet, clusters from different variables are
not able to cross panes into other variable’s spreadsheet
space. In addition, cluster selection and spreadsheet reorga-
nization is limited to the space that one variable takes in the
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Fig. 12. A cluster of low wavelet coefficients from the OH variable of a
122 time-step combustion data set. An automatic dynamic transfer
function is generated that is centered around the cluster centroid. A
transfer function of this will track the centroid value over time and
measure the variance of the data around the centroid.
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spreadsheet since clustering and spreadsheet reorganization
is for temporal relationships within the variable. However,
after clusters are added to the time histogram spreadsheet,
the user is allowed to move rows around to compare trends
between clusters from different variables. Even though
brushing and linking is limited within one variable, the way
interactions are created are through the Boolean operators to
intersect, union and difference the data between variables. By
saving the operations until the end, the user can make
adjustments in the temporal trends per cluster, per variable
and see the final results after operation, rather than
comingling the operations and selection together, resulting
in a convoluted process.

6.2 Animation Rescaling

In addition to being able to operate on clusters to create
temporal relationships, we can also make the temporal
trends more apparent in animation. Our goal is that if there
is a slow trend, we want to speedup the animation so that
the trend is more apparent. Conversely, if there is a
temporal trend that occurs relatively too fast, we want to
be able to slowdown the animation. In either case, we are
trying to normalize visual activity, such that it is more
apparent to the user [23].

In our time histogram spreadsheet interface, the time
runs horizontally left to right in each cell. There is a time
base mapping such that the animation runs at r time steps
per second and f frames per second, where the animation
runs at r=f time steps per frame. Additionally, the spatial
layout of the spreadsheet maps x horizontal pixels per time
step. Given these conditions, the user can dynamically
rescale the animation speed so that it changes how fast or
how slow changes appear to the user during animation by
the multiplication of a speedup factor.

From observing the slope of selected time curves or the
centroid curve, the user can infer the rate of change that will

take place in the animation. If it is too steep, she may wish
to slowdown the animation, likewise, if a slope is too
shallow, she may wish to speedup the animation. By
marking two points on the time axis, the user can stretch the
time axis by pulling the points away from each other. Time
curves will be stretched so that slopes are flattened. This
will dilate the animation time between the two points or
slowdown the animation between these two points. Addi-
tional frames will be inserted in the animation. Conversely,
by dragging one point toward the other on the time line, the
animation time base will be compressed. Frames will be
dropped in between two points during animation, and the
time curve slopes will be steeper in the interface.

The speedup factor is determined by measuring the
distance between the old distance on the time line and the
new distance. If the old distance between time a and b on
the time line is o pixels and the new distance is n pixels, the
speedup factor is o=n between the two points on the time
line. To remove abrupt instantaneous changes in animation
speed, we give the user the ability to add automatic ease in
and ease out. A simple sine wave interpolation, between the
base rate r=f and ðr=fÞ � ðo=nÞ, is used in the ease-in and
ease-out ranges to speedup or slowdown the animation in a
smooth manner. In order to indicate the time base mapping
during animation, a time line and time stamp are embedded
in the animation. In this way, the user has context of when
events are taking place, and how much the animation is
being sped up or slowed down.

Given our previous assumption, we can apply an
automatic time rescaling scheme to reschedule the anima-
tion frames to have dynamic speedup and slowdown to
highlight all of the temporal changes equally. The user
provides an absolute value rate of change optimization
parameter p, and a centroid vector or the average of
multiple centroids to optimize. We dynamically speedup
and slowdown the animation so that apparent rate of
change, of the given cluster centroid, matches the user given
value rate of change over real time. This is assuming that
the rate of change is data value based, but the rate of change
can also normalize in color or opacity space. The animation
speedup factor between time step t and tþ 1 is p=HðtÞ,
where HðtÞ is the high-frequency wavelet coefficient at time
step t of the centroid H, and p is the optimal rate of change.
The user can specify a maximum acceleration or decelera-
tion parameter to clamp the rate of change, so that
animation speed will not increase or decrease too abruptly.
Included with the supplemental material are two earth-
quake movies that showcase automatic frame rate change
based on the centroid curve. The visible rate of change
increases over time, so the animation slows down to
compensate for the visual change and highlight rapid
change, while it speeds up when there is not much change
happening.

7 CASE STUDY: COMBUSTION

In this section, we present a sample usage of our system to a
turbulent combustion data set at a 480� 720� 120 grid
simulation, 122 time steps, with multiple variables, pro-
vided by Dr. Jacqueline Chen of Sandia National Labora-
tory through the SciDAC Ultravis Institute. When exploring
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Fig. 13. An example of performing a visual query with selected clusters
from the 2-meter atmospheric temperature data of 6,000 time steps. The
composition spreadsheet with volume tree operators allows us to
combine clusters to drill down into the data. The two bottom left clusters
are from different frequency bands, and an XOR operation is used to find
the outliers that are not in common with either. The bottom right clusters
are from the same frequency band, so they do not intersect in space, but
we can join them together with an ATOP operation [30]. Then, the
temporal outliers between the two operations can again be found by
taking the XOR of both results.
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the OH variable in the cluster spreadsheet, there is a cell in
Fig. 8, which is different from the other clusters in value
over time. Most data points at a glance have an upward
sloping trend over time, while this particular cluster starts
high value, decreases, and then increases at the end of the
time series. This trend can be seen as well in Fig. 14a. All of
the clusters can be seen in Fig. 3, and how they spatially
relate to one another.

The center cell is the cell of interest in Fig. 14a, and we
resort the spreadsheet to show relevance to the cell we are
interested in. When looking in the same column, we see that
there are no other cells that have the similar temporal trend
in that frequency band. Additionally, the thumbnail
rendering shows that the data points of the cluster form a
well-defined structure. We can also see this through the
crossover-count information, by the yellow bar, is steady
across temporal scales.

If we inspect another variable, we can possibly correlate
the spatial area to another temporal trend. A portion of the
mix fraction spreadsheet can be seen in Fig. 14b, we look for
areas that have the same spatial area or correlated curves.
There appear to be several clusters that appear to have
similar spatial volumetric occupancy, from the visualization
thumbnails, where OH and mixfrac have temporal clusters
in the same area of the data. We can also see this in Fig. 3.

We also look at the � variable to see if there are any
trends that might be related to the OH and mix fraction, but
there are not any clusters that appear to be related.
However, one thing that is of interest is the pulse train
that is in many of the frequency bands in the short-term
trends, seen in Fig. 10. Even though we are not able to
perform spatial value tracking, we are still able to detect

visually from the spreadsheet some value movement
through space as a temporal trend of a pulse. Our method
excels at the detection of event start and ends, so we can
precisely define the area and time that the value movement
started by the one cluster at the head of the pulse train. By
combining all of the cells together that have the pulse into
an overlay cell, as in Fig. 14c, we are able to see that the
pulse forms a moving value in space over time. Each cluster
is an area that the value moves through. Potentially, the
area of the overlay cell coincides with the data in the OH
and mix fraction.

When we intersect the OH cluster with the one of the mix
fraction clusters, seen in Figs. 15a and 15b, using projection
operators, there is a spatial overlap and structural coin-
cidence, in Fig. 15c. They mostly overlap with each other,
and this is a strong indication that those data points have a
correlation in the two variables for those data points. The �
clusters that are extracted do not seem to have value
correlation or spatial correlation with the OH and mixfrac.
We cannot say that � is temporally correlated from the
information that we have and may be independent of those
two variables.

8 CASE STUDY: CLIMATE MODELING

The Community Climate System Model (CCSM) 3.0 from
the National Center for Atmospheric Research is a climate
model for predicting past, present, and future climates. The
particular data set we use is a 6,000 time-step series of
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Fig. 14. (a) A portion of spreadsheet of the OH variable. (b) A portion of

spreadsheet of the mix fraction variable over time. (c) An overlay cell

from the � variable, showing a value moving through space over time.

Fig. 15. (a) A temporal cluster from the OH variable of the combustion
data. (b) A temporal cluster from the mix fraction variable. (c) A
projection or combination of the two variables in the same space to show
coincidence and overlap. The bottom volumetric regions of the two
clusters from the two variables overlap with each other and share similar
structural features.
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world wide 2-meter monthly atmospheric temperature on a

256 � 128 2D grid. This multiscale temporal methodology

works quite well with climate model data and, in particular,

for the large number of time steps in the CCSM. By using

the multiresolution wavelets to filter time, we can see long-

term trends that might otherwise be obscured. The high

wavelet coefficients are well suited to show the activity that

is present in long-term trends.
For example, with CCSM, the time series is 6,000 time

steps and local temporal feature has little effect on the long-

term picture. While looking at the time series at the original

resolution, it is just not possible to see large temporal

features. Fig. 16a shows clusters of large-scale temporal

features in the low wavelet coefficients. There does not
seem to be any activity in the data. If we look at the high
wavelet coefficients found in the bottom image, a different
picture emerges. In this example, we can see that all areas in
the climate model have a change in temperature over the
first 3,000 months and over the next 3,000 months. Due to
the scale of the data, the high wavelet coefficients make it
easy to detect changes in value.

For large time data such as this, it would not be feasible
to use traditional animation to see long-term trends, unless
we were to use time rescaling. Even then, if the data was not
smoothed, the high-frequency noise of speeding up the
animation may make it difficult to see the long-term trend.
Our filtering and clustering method is able to remove the
short-term trends and display the long-term summaries that
are present in the data.

We also have previous examples, Fig. 2, which show the
ability to classify geographical regions based on seasonal
temperature activity. Additionally, through multiscale tem-
poral filtering, we can classify geographical regions into
hemispheres or ignore hemispheres differences, depending
on the seasonal phase shift. A example of this can be seen in
Fig. 9 with the row that contains cell A. Cell A is a cluster from
8-month trends, so there will be differences in the temperature
between the northern and southern hemispheres due to
seasonalphaseshift betweenthehemispheres. CellAcontains
cluster of data points that share similar temperatures in the
northern hemisphere. The cells to the left of A are at 16 and
32 month trends, the hemispherical differences are not seen at
this time scale, and they have data points in both hemisphere
that share the same temperature at that time scale.

9 CASE STUDY: EARTHQUAKE

The earthquake data was created by the TeraShake 2.1
simulation Southern California Earthquake Center, provided
by the San Diego Supercomputer Center. It is a 226 time-step
series on a 100� 375� 750 grid, where we used a computed
velocity magnitude scalar as the data. Clustering is able to
extract the regions that have different wave characteristics
due to different geology. This is because the basins that
amplify earthquake waves have different temporal behavior
compared to other data points. By clustering in time, we are
able to find the basin because it behaves differently compared
to the surrounding geographical region, and therefore, we are
able to isolate it.

Fig. 17a shows the entire data in the time sequence.
Fig. 17b is the cluster that was extracted from the data
through temporal activity clustering. As we can see from
comparing the two images, we are able to isolate just the
area that corresponds to the basin, because those data
points share the same temporal activity, while the other
surrounding data points have different activity, and there-
fore, they are not clustered with the basin. Given traditional
methods, a user would have to watch an animation to
deduce this different activity, and even then, she may not be
able to isolate the data points quite as precisely as this. The
accuracy depends on the transfer function and animation
and the ability of the user to notice the visual activity
difference, while our method was able to automatically find
the different time activity that comprises the basin.
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Fig. 16. Two spreadsheet portions from the climate model data set.
(a) Displays several clusters from the low wavelet coefficients. The time
series is 6,000 time steps long, and even after wavelet analysis, the
trends are not visible because of the value scale and length of data.
(b) Shows clusters from the high coefficient clustering of the same data
set. Here, we can see that there are long-term trends in the data, as the
cluster data tells us there is a rate of change over the long term in time.
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In visualizing the earthquake, the phenomenon is a burst
of wave activity in the basin, and therefore, we can use our
animation time scaling to slowdown and emphasize the
activity in that time period. Animations in the supplemental
material show an earthquake shockwave coming into the
basin. Initially, there is not much activity happening in the
basin, so the animation runs faster. As soon as the
earthquake starts to happen, the animation begins to
slowdown, so the user can see the temporal details. Once
the shockwave and activity burst has passed, the animation
speeds up once more.

10 CONCLUSION

We have presented a methodology for exploring time series
data by focusing on temporal trends. Our goal was to locate
data points of similar temporal trends across multiple time
scales. To achieve this, we apply the wavelet transform to
data along time to create a multiresolution temporal
representation. Then, we cluster the data in the different
temporal scales and wavelet coefficient types to derive
groups of similar trends. These trends are then shown to the
user, who can browse the trends present in their data, select
and interact with the data, and eventually visualize the
explored phenomena.

The temporal clusters are shown in a visualization
spreadsheet that summarizes the temporal and cluster
content of the data. From there, the user can choose clusters
to explore, which will be placed on a secondary time
histogram spreadsheet. The time histogram allows the user
to see the value distribution over time and also make
adjustments to the data in the cluster through brushing and
linking. Selected clusters are then used in the final
visualization, where the user can perform Boolean opera-
tions on the data and animate the temporal trends.

We believe that the proposed method and system are

useful for exploring data in a time centric manner, rather than

focusing on space and value. There is room for improvement

though. In particular, the clustering method is more appro-

priate for spatially static data such as weather climate data or

temporal hotspots such as the earthquake basin. In the future,

we would like to extend the method to be able to deal with

spatially moving time activity or temporal phase shift, such as

is seen in the combustion or earthquake data. Second, the user

interface needs to be able to adapt to the data explosion from

extracting the multiple temporal scales and clusters. As can

be seen with the cluster spreadsheet, even with cell culling,

there can be many cells that can overwhelm the user.

Additional metrics, controls, or cues to highlight potential

interesting time activity would be useful to reduce the

amount of data that is shown to the user.
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